

ESXSMM85-S10C

OSFP 400Gb/s SR4 100m DDM

PRODUCT FEATURES

- Data rate up to 425Gbps (4xPAM453.125 GBd)
- High speed I/O electrical interface (400GAUI-4)
- Support 5 applications:

 400GBASE-SR4
 Interview
 - 200GBASE-SR4
 - 100GBASE-SR4
 - 2x200CBASE-SR2
 - 4x100GBASE-SR1
- Compliant to OSFP MSA Rev5.0
- Maximum link length of 60m on OM3 or 100m on OM4
- 4x VCSEL arrays and 4x PIN PD arrays
- Optical connector:MPO-12(APC)
- Power Consumption: <8W
- Management interface:CMIS 5.2
- +3.3V single power supply
- QSFP+28Gb/s compliant
- Operating temperature range:Commercial:0℃ to +70℃

APPLICATIONS

- 400GBASE-SR4 400G Ethernet
- Data center

Compliance

- OSFP MSA
- IEEE802.3ck
- RoHS

Ordering information

Part No.	Bit Rate (Gbps)	Laser (nm)	Distance(km)	Fiber Type	DDMI	Connector	Temp (℃)
ESXSMM85-S10C	425	850	100 (OM4)	multi-mode fiber	YES	MPO-12 (APC)	0~70

Pin Diagram

Top Side (viewed from top) Bottom Side (viewed from bottom) 60 59 58 GND TX1p TX1n GND TX2p 1 2 TX2n 3 57 GND GND 4 56 55 ТХ3р ТХ4р 5 6 TX3n TX4n 54 GND GND 7 ----- Module Card Edge ------53 ТХ5р ТХ6р 8 52 TX5n TX6n 9 51 10 GND GND 50 49 48 47 ТХ7р TX8p 11 TX7n GND TX8n GND 12 13 SDA 14 SCL 46 vcc 15 VCC 45 VCC 16 VCC 44 43 INT/RSTn LPWn/PRSn 17 GND GND 18 42 RX8n RX7n 19 41 RX8p RX7p 20 40 21 GND GND 39 RX5n 22 RX6n 38 RX6p RX5p 23 37 36 24 25 GND GND RX4n RX3n 35 34 RX3p GND 26 27 RX4p GND 33 RX2n RX1n 28 32 RX2p RX1p 29 31 GND GND 30

Figure 1

Pin	Name	Logic	Description	Plug	Notes
1	GND		Ground	1	
2	Tx2p	CML-I	Receiver Data Non-Inverted	3	
3	Tx2n	CML-I	Receiver Data Inverted	3	
4	GND		Ground	1	
5	Tx4p	CML-I	Receiver Data Non-Inverted	3	
6	Tx4n	CML-I	Receiver Data Inverted	3	
7	GND		Ground	1	
8	Тх6р	CML-I	Receiver Data Non-Inverted	3	
9	Tx6n	CML-I	Receiver Data Inverted	3	
10	GND		Ground	1	
11	TX8p	CML-I	Receiver Data Non-Inverted	3	
12	TX8n	CML-I	Receiver Data Inverted	3	
13	GND		Ground	1	
14	SCL	LVCMOS-I/O	2-wire Serial interface clock	3	
15	VCC		+3.3V Power	2	
16	VCC		+3.3V Power	2	
17	LPWn/PRSn	Multi-Level	Low-Power Mode / Module	3	1A
18	GND		Ground	1	
19	RX7n	CML-O	Receiver Data Inverted	3	

Pin Descriptions

Pin	Name	Logic	Description	Plug	Notes
20	RX7p	CML-O	Receiver Data Non-Inverted	3	
21	GND		Ground	1	
22	RX5n	CML-O	Receiver Data Inverted	3	
23	RX5p	CML-O	Receiver Data Non-Inverted	3	
24	GND		Ground	1	
25	RX3n	CML-O	Receiver Data Inverted	3	
26	RX3p	CML-O	Receiver Data Non-Inverted	3	
27	GND		Ground	1	
28	RX1n	CML-O	Receiver Data Inverted	3	
29	RX1p	CML-O	Receiver Data Non-Inverted	3	
30	GND		Ground	1	
31	GND		Ground	1	
32	RX2p	CML-O	Receiver Data Non-Inverted	3	
33	RX2n	CML-O	Receiver Data Inverted	3	
34	GND		Ground	1	
35	RX4p	CML-O	Receiver Data Non-Inverted	3	
36	RX4n	CML-O	Receiver Data Inverted	3	
37	GND		Ground	1	
38	RX6p	CML-O	Receiver Data Non-Inverted	3	
39	RX6n	CML-O	Receiver Data Inverted	3	
40	GND		Ground	1	
41	RX8p	CML-O	Receiver Data Non-Inverted	3	
42	RX8n	CML-O	Receiver Data Inverted	3	
43	GND		Ground	1	
44	INT/RSTn	Multi-Level	Module Interrupt / Module Reset	3	
45	VCC		+3.3V Power	2	
46	VCC		+3.3V Power	2	
47	SDA	LVCMOS-I/O	2-wire Serial interface data	з	
48	GND		Ground	1	
49	TX7n	CML-I	Transmitter Data Inverted	3	
50	TX7p	CML-I	Transmitter Data Non-Inverted	3	
51	GND		Ground	1	
52	TX5n	CML-I	Transmitter Data Inverted	3	
53	TX5p	CML-I	Transmitter Data Non-Inverted	3	
54	GND		Ground	1	
55	TX3n	CML-I	Transmitter Data Inverted	3	
56	TX3p	CML-I	Transmitter Data Non-Inverted	3	

Pin	Name	Logic	Description	Plug	Notes
57	GND		Ground	1	
58	TX1n	CML-I	Transmitter Data Inverted	3	
59	TX1p	CML-I	Transmitter Data Non-Inverted	3	
60	GND		Ground	1	

Notes:

- 1. Plug Sequence specifies the mating sequence of the host connector and module. The contact sequence is 1,2,3.
- 2. LPWn/PRSn is a Multi-level signal for low power control from host to module and module presence indication from module to host. It designed according to OSFP Module Specification Section 13.5.3
- 3. INT/RSTn is a Multi-level signal for interrupt request from module to host and reset control from host to module. It designed according to OSFP Module Specification Section 13.5.2

Absolute Maximum Ratings

Parameter	Symbo	Min	Туре	Мах	Unit	Ref.
Storage Temperature	Ts	-40		85	°C	
Storage Ambient Humidity	H _A	15		85	%	
Maximum Supply Voltage	Vcc	-0.5		3.6	V	
Receiver damage Threshold, per lane		5			dBm	
Lead Soldering Temperature/Time	TSOLD			260/10	°C/sec	1
Lead Soldering Temperature/Time	TSOLD			360/10	°C/sec	2

Notes:

- 1. Suitable for wave soldering.
- 2. Only for soldering by iron.

Recommended Operating Conditions

Data Rate Specification	Symbol	Min.	Тур.	Max.	Unit	Ref.
Supply Voltage	Vcc	3.135	3.3	3.465	V	
Supply Voltage Noise Tolerance	PSNR			66	mV	10Hz~10MHz
Instantaneous peak current at high	lcc_ip			3200	mA	
Sustained peak current at high power enable	lcc_sp			2666	mA	
Supply steady state Current	lcc			2552	mA	Steady state
Operating Case Temperature	Тс	0		70	°C	
Link distance on OM4 MMF	d			100	meters	

Optical Characteristics (TOP = 0°C to 70°C, VCC = 3.3 ± 5% Volts)

Param	eter	Sym	Min.	Тур.	Max.	Unit	Ref.
Transmi	tter (per lane)						
Channel data rate		fDC		106.25		Gb/s	
Signaling rate		F_{sg}		53.125			PAM4
Signal speed va nominal	riation from	⊿fsg	-100		+100	Ppm	
Center Wavelen	gth	λc	840		860	nm	
RMS Spectral W	ïdth	σ			0.6	nm	Note1
Average Launch	power, each lane		-4.6		4	dBm	
Outer Optical Modulation ¹ Amplitude	max(TECQ, ⊡ECQ) ≤ 1.8dB 1.8 < max		max [-2.6 ,	max(TECQ,TI	ECQ) – 4.4]	dB	
(OMAouter), each lane	(TECQ, TDECQ) ≤4.4dB						
Transmitter and closure for PAN		TDEC Q			4.4	dB	
Transmitter eye (TECQ), each la	closure for PAM4	TECQ			4.4		
Transmitter pow each lane	ver excursion,				2.3		
Average Optica Off Transmitter,	l Output Power of each lane	Poff			-30	dBm	
Extinction Ratio	, each lane	ER	2.5			dB	
Optical return lo	ss tolerance				14	dB	
Encircled flux			≥86% at 19um ≤30% at 45um				Note 2
Receiv	ver(per lane)						
Damage thresh	old		5			dBm	Note 3
Average receive	e power, each lane		-6.4		4.0	dBm	Note 4
Receive power lane	(OMAouter), each				3.5	dBm	
Receiver reflect	ance				-15	dB	
Receiver sensitivity(OMA outer),each lane	TECQ ≤ 1.8dB 1.8 < TECQ ≤ 4.4dB				-4.6 -6.4+ TECQ	dBm	Note 5 Figure 2
Receiver Loss c Indicator Assert	-	LOSA	-15			dBm	
Receiver Loss o Indicator De-ass	-	LOSD			-7.5	dBm	

Hysteresis	LOSH	0.5		5	dB		
Stressed receiver sensitivity (OMAouter), each lane				-2	dBm	Note 5, 6	
Conditions of stressed receiver sensitivity test:							
Stressed eye closure for PAM4(SE lane under test	CQ),		4.4		dB		
OMAouter of each aggressor lane			3.5		dBm		

Notes:

- 1: RMS spectral width is the standard deviation of the spectrum
- 2: If measured into type A1a.2 or type A1a.3, or A1a.4, 50 um fiber, in accordance with IEC 61280-1-4.

3: The receiver shall be able to tolerate, without damage, continuous exposure to an optical input signal having this average power level on one lane. The receiver does not have to operate correctly at this input power.

4: Average receiver power, each lane(min) is not the principal indicator of signal strength. A received power below this value cannot be compliant; however, a value above this does not ensure compliance.

5: For when Pre-FEC BER is 2.4x10-4

6: Measured with conformance test signal at TP3 (see 167.8.14) for the BER specified in 167.1.1

7: These test conditions are for measuring stressed receiver sensitivity. They are not characteristics of the receiver.

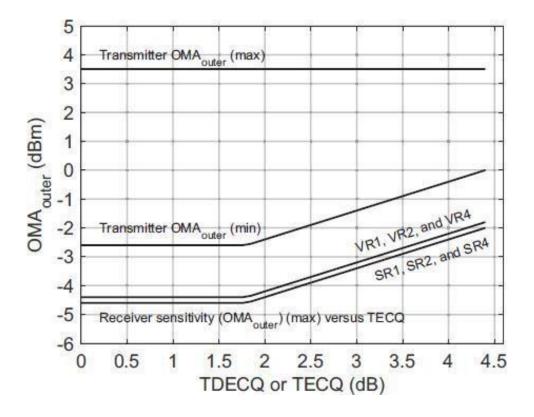


Figure 2 Receiver Sensitivity

Electrical Characteristics (TOP = 0°C to 70°C, VCC = 3.3 ± 5% Volts)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Ref.
Supply Voltage	Vcc	3.135		3.465	V	
Power Dissipation	Pd			8	W	
Transmitter						
Signaling rate per lane (range)		-100ppm	53.125	+100ppm	GBd	PAM4
Differential data output swing		300		900	mVpp	
Eye height		15			mV	
Vertical eye closure [VEC]				12	dB	
Common-mode to differential-mode return loss [RLdc]		Equation (120G-1)			dB	Note 2
Effective return loss [ERL]		8.5			dB	
Differential termination mismatch				10	%	
Transition time (20% to 80%)		8.5			ps	
Receiver						
Signaling rate, each lane (range)		-100ppm	53.125	+100ppm	GBd	at TP1
Differential pk-pk input voltage tolerance		750			mV	at TP1a
Differential-mode to common- mode return loss [RLcd]		Equation (120G-1)			dB	at TP1, Note 2
Effective return loss [ERL]		7.3			dB	at TP1
Differential termination mismatch				10	%	at TP1
Vertical eye closure				12	dB	at TP1
Transition Time		10			ps	at TP1

Notes:

- 1: Electrical module output is squelched for loss of optical input signal.
- 2: IEEE P802.3ck D3p0 [1]

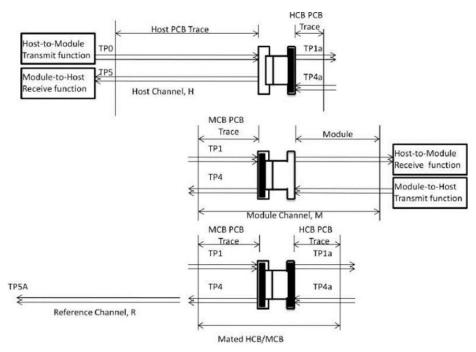


Figure 3

HIGH SPEED DATAINTERFACE

Rx(n)(p/n)

Rx(n)(p/n) are OSFP module receiver data outputs. Rx(n)(p/n) are AC-coupled 100 Ohm differential lines that should be terminated with 100 Ohm differentially at the Host ASIC(SerDes). The AC coupling is inside the OSFP module and not required on the Host board. When properly terminated, the differential voltage swing shall be less than or equal to 900 mVpp or as defined by the relevant standard, or whichever is less. Output squelch for loss of optical input signal, hereafter Rx Squelch, is required and shall function as follows. In the event of the Rx input signal on any optical port becoming equal to or less than the level required to assert LOS, then the receiver output(s) associated with that Rx port shall be squelched. A single Rx optical port can be associated with more than one Rx output. In the squelched state output impedance levels are maintained while the differential voltage amplitude shall be less than 50 mVpp.

In module operation, default Rx auto squelch is enable. But Rx auto squelch and force squelching function are not supported.

Tx(n)(p/n)

Tx(n)(p/n) are OSFP module transmitter data inputs. They are AC-coupled 100 Ohm differential lines with 100 Ohm differential terminations inside the OSFP optical module. TheAC coupling is implemented inside the OSFP optical module and not required on the Host board. Output squelch for loss of electrical signal, hereafter Tx Squelch, is an optional function. Where implemented it shall function as follows. In the event of the differential, peak-to-peak electrical signal amplitude on any electrical input lane becoming less than 70 mVpp, then the transmitter optical output associated with that electrical input lane shall be squelched and the associated TxLOS flag set. If multiple electrical input lanes are associated with the same optical output lane, the loss of any of the incoming electrical input lanes causes the optical output lane to be squelched. For applications, e.g., Ethernet, where the transmitter off condition is defined in terms of average power, squelching by disabling the transmitter is recommended and for applications, e.g., InfiniBand, where the transmitter off condition is defined in terms of OMA, squelching the transmitter by setting the OMA to a low level is recommended.

In module operation, default Tx auto squelch is enable. But Tx auto squelch and force squelching function are not supported.

CONTROL INTERFACE

Low Speed ControlPins

There are 4 low-speed signals consisting of SCL, SDA, LPWn/PRSn and INT/RSTn. These signals are used for configuration and control of the module by the host. SCL and SDA use 3.3V LVCMOS levels and are bidirectional signals. LPWn/PRSn and INT/RSTn have additional circuitry on the host and module to enable multi-level bidirectional signaling. See the OSFP MSA specification for detailed description of eacah lane

Low Speed Electrical Specifications

INT/RSTn is a dual function signal that allows the module to raise an interrupt to the host and also allows the host to reset the module. The INT/RSTn signal operates in 3 voltage zones to indicate the state of Reset for the module and Interrupt for the host

Parameter	Nominal	Min	Max	Unit	Note
Host VCC	3.300	3.135	3.465	Volts	VCC voltage on the Host
H_Vref_INT	2.500	2.475	2.525	Volts	Precision voltage reference for
M_Vref_RSTn	1.250	1.238	1.263	Volts	Precision voltage reference for
R1	68k	66k	70k	Ohms	Recommend 68.1k ohms 1%
R2	5k	4.9k	5.1k	Ohms	Recommend 4.99k ohms 1%
R3	8k	7.8k	8.2k	Ohms	Recommend 8.06k ohms 1%
V_INT/RSTn_1	0.000	0.000	1.000	Volts	INT/RSTn voltage for No Module
V_INT/RSTn_2	0.000	0.000	1.000	Volts	INT/RSTn voltage for Module
V_INT/RSTn_3	1.900	1.500	2.250	Volts	INT/RSTn voltage for Module
V_INT/RSTn_4	3.000	2.750	3.465	V0lts	INT/RSTn voltage for Module

Table-1 INT/RSTn circuit parameters

LPWn/PRSn is a dual function signal that allows the host to signal Low Power mode and the module to indicate Module Present. The LPWn/PRSn signal operates in 3 voltage zones to indicate the state of Low Power mode for the module and Module Present for the host

Parameter	Nominal	Min	Max	Unit	Note
Host VCC	3.300	3.135	3.465	Volts	VCC voltage on the Host
H_Vref_PRSn	2.500	2.475	2.525	Volts	Precision voltage reference for
M_Vref_LPWn	1.250	1.238	1.263	Volts	Precision voltage reference for
R1	25k	24.5k	25.5k	Ohms	Recommend 24.9k ohms 1%
R2	15k	14.7k	15.3k	Ohms	Recommend 15k ohms 1%
R3	10k	9.8k	10.2k	Ohms	Recommend 10k ohms 1%
V_INT/RSTn_1	0.950	0.000	1.100	Volts	LPWn/PRSn voltage for Module
V_INT/RSTn_2	1.700	1.400	2.250	Volts	LPWn/PRSn voltage for Module
V_INT/RSTn_3	3.300	2.750	3.465	Volts	LPWn/PRSn voltage for No

Table-2 LPWn/PRSn circuit parmeters

2-Wire Management Interface

A management interface, as already commonly used in other form factors like QSFP, SFP, and CDFP, is specified in order to enable flexible use of the module by the user. This OSFP specification is based on CMIS.

The OSFP Module supports alarm, control and monitor functions via a two-wire interface bus. Upon module initialization, these functions are available. OSFP two-wire electrical interface consists of 2 pins of SCL (2-wire serial interface clock) and SDA (2-wire serial interface data). The low speed signaling is based on Low Voltage CMOS (LVCMOS) operating at Vcc. Hosts shall use a pull-up resistor connected to Vcc_host on the 2-wire interface SCL (clock) and SDA (Data) signals. The timing requirements on the two- wire interface are listed in Table 2 and Figure 3.

Table-3 Management Interface Timing

		Fast Mode	(400 kHz)		
Parameter	Symbol	Min	Max	Unit	Conditions
Clock Frequency	fSCL	0	400	kHz	
Clock Pulse Width Low	tLOW	1.3		μs	
Clock Pulse Width High	tHIGH	0.6		μs	
Time bus free before new transmission can start	tBUF	20		μs	Between STOP and START and between ACK and ReStart
START Hold Time	tHD.STA	0.6		μs	The delay required between SDA becoming low and SCL starting to go low in a START
START Setup Time	tSU.STA	0.6		μs	The delay required between SCL becoming high and SDA starting to go low in a START

Data In Hold Time	tHD.DAT	0		μs	
Data In Setup Time	tSU.DAT	0.1		μs	
Input Rise Time	tR		300	ns	From (VIL,MAX=0.3*Vcc) to (VIH, MIN=0.7*Vcc)
Input Fall Time	tF		300	ns	From (VIH,MIN=0.7*Vcc) to
STOP Setup Time	tSU.STO	0.6		μs	

		Fast Mode(400 kHz)			
Parameter	Symbol	Min	Мах	Unit	Conditions
STOP Hold Time	tHD.STO	0.6		us	
Aborted sequence bus release	Deselect _Abort		2	ms	Delay from a host de-asserting ModSelL (at any point in a bus) to the QSFP112 module releasing SCL and SDA
ModSelL Setup Time1	tSU.ModSelL	2		ms	ModSelL Setup Time is the setup time on the select line before the start of a host initiated serial bus sequence.
ModSelL Hold Time1	tHD.ModSelL	2		ms	ModSelL Hold Time is the delay from completion of a
Serial Interface Clock Holdoff "Clock Stretching"	T_clock_hold		500	US	Time the QSFP112 module may hold the SCL line low before continuing with a read or write
Complete Single or Sequential Write to non- volatile registers	tWR		80	ms	Time to complete a Single or Sequential Write to non- volatile registers.
Accept a single or sequential write to volatile memory.	tNACK		10	ms	Time to complete a Single or Sequential Write to volatile registers.
Time to complete a memory bank/page	tBPC		10	ms	Time to complete a memory bank and/or page change.
Endurance (Write Cycles)		50k		cycles	Module Case Temperature= 70 °C

Notes:

The management registers can be read to determine alternate support for ModSelL set up and hold times. See CMIS 8.4.5, Durations Advertising or SFF-8636 6.2.9, Free Side Device Properties (Page 00h, Bytes 107-115).

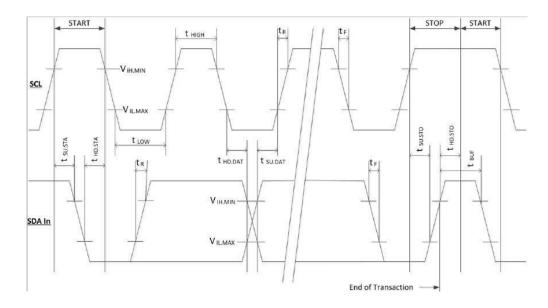


Figure 4 2-Wire Interface Timing Diagram

Soft Control and Status Functions

Table 4 lists the required timing performance for software control and status functions

Table 4	Control	and	Status	Functions
---------	---------	-----	--------	-----------

Parameter	Symbol	Min	Max	Unit	Conditions
MgmtInitDuratio n	Max MgmtInit Duration		2000	ms	Time from power on1, hot plug or rising edge of reset until until the high to low SDA transition of the Start condition for the first acknowledged TWI transaction.
ResetL Assert Time	t_reset_init	10		μs	Minimum pulse time on the ResetL signal to initiate a module reset.
Int/RxLOS Mode Change	t_IntL/RxLOSL		100	ms	Time to change between IntL and RxLOSL modes of the dual- mode signal IntL/RxLOSL.
LPMode/TxDis mode change time	t_LPMode/Tx Dis		100	ms	Time to change between LPMode and TxDis modes of LPMode/TxDis.
IntL Assert Time	ton_IntL		200	ms	Time from occurrence of condition triggering IntL until Vout:IntL=Vol.
IntL Deassert Time	toff_IntL		500	μs	Time from clear on read2 operation of associated flag until Vout:IntL=Voh.This includes deassert times for Rx LOS, Tx Fault

Parameter	Symbol	Min	Max	Unit	Conditions
Rx LOS Assert Time	ton_los		100	ms	Time from Rx LOS condition present to Rx LOS bit set (value = 1b) and IntL asserted.
Rx LOS Assert Time (optional fast mode)	ton_losf		1	ms	Time from Rx LOS state to Rx LOS bit set (value = 1b) and IntL asserted3.
RxLOS Deassert Time (optional fast mode)	toff_f_LOS		3	ms	Optional fast mode is advertised via the CMIS [5]. Time from optical signal above the LOS deassert threshold to when the module releases the RxLOSL signal to high.
TX Disable Assert Time	ton_TxDis		100	ms	Time from Tx Disable bit set to 1 until optical output falls below 10% of nominal.
TX Disable Assert Time (optional fast mode)	ton_f_TxDis		3	ms	Optional fast mode is advertised via CMIS [5]. Time from TxDis signal high to the optical output reaching the disabled level.
TX Disable Deassert Time	toff_TxDis		400	ms	Time from Tx Disable bit cleared to 1 until optical output rises above 90% of nominal4.
Tx Fault Assert Time	ton_Txfault		200	ms	Time from Tx Fault state to Tx Fault bit set (value=1b) and IntLasserted.
Flag Assert Time	ton_flag		200	ms	Time from occurrence of condition triggering flag to associated flag bit set (value=1b) and IntL asserted.
Mask Assert Time	ton_mask		100	ms	Time from mask bit set (value=1b)5 until associated IntL assertion is inhibited.
Mask Deassert Time	toff_mask		100	ms	Time from mask bit cleared (value=0b)5 until associated IntL operation resumes.

Note:

1: Power on is defined as the instant when supply voltages reach and remain at or above the minimum level specified in Table 2.

2: Measured from the rising edge of SDA in the stop bit of the read

transaction.

3: Rx LOS condition is defined at the optical input by the relevant

standard.

- 4: Tx Squelch Deassert time is longer than SFF-8679 [7].
- 5: Measured from the rising edge of SDA in the stop bit of the write transaction.

Squelch and Disable Assert/De-assert and Enable/Disable Timing

Table 5 I/O Timing for Squelch & Disable

Parameter	Symbol	Max	Unit	Conditions
Rx Squelch Assert Time	ton_Rxsq	15	ms	Time from loss of Rx input signal until the squelched output condition is reached.
Tx Squelch Assert Time	ton_Txsq	400	ms	Time from loss of Tx input signal until the squelched output condition is reached.
Tx Squelch De- assert Time	toff_Txsq	1.5	S	Tx squelch deassert is system and implementation dependent.
Tx Disable Assert Time	ton_txdis	100	ms	Time from the stop condition of the Tx Disable write sequence1 until optical output
Tx Disable Assert Time (optional fast mode)	ton_txdisf	3	ms	Time from Tx Disable bit set (value = 1b)1 until optical output falls below 10% of nominal and see notes 2 and 3.
Tx Disable De- assert Time	toff_txdis	400	ms	Time from Tx Disable bit cleared (value = 0b)1 until optical output rises above 90% of nominal and see note 2.
Tx Disable De- assert Time (optional fast mode)	toff_txdisf	10	ms	Time from Tx Disable bit cleared (value = 0b)1 until optical output rises above 90% of nominal, see note 3.
Rx Output Disable Assert Time	ton_rxdis	100	ms	Time from Rx Output Disable bit set (value = 1b)1 until Rx output falls below 10% of nominal
Rx Output Disable De-assert Time	toff_rxdis	100	ms	Time from Rx Output Disable bit cleared (value = 0b)1 until Rx output rises above 90% of nominal.
Squelch Disable Assert Time	ton_sqdis	100	ms	This applies to Rx and Tx Squelch and is the time from bit set (value = 0b)1 until squelch functionality is disabled.
Squelch Disable De-assert Time	toff_sqdis	100	ms	This applies to Rx and Tx Squelch and is the time from bit cleared (value = 0b)1 until squelch functionality is enabled.

Note:

1: Measured from LOW to HIGH SDA signal transition of the STOP condition of the write

transaction.

2: CMIS 4.0 and beyond the listed values are superseded by the advertised

DataPathTxTurnOff_MaxDuration and DataPathTxTurnOn_MaxDuration times in P01h.168.

3. Listed values place a limit on the DataPathTxTurnOff_MaxDuration and

DataPathTxTurnOn_MaxDuration times (P01h.168) that can be advertised by such

modules (for CMIS 4.0 and beyond).

Power

+3.3V power is delivered to the module via 4 power pins (VCC). These 4 power pins shall be connected together on the module and also together on the host. Each power pin allows up to 2.5 Amps for a total of

10.0 Amps.

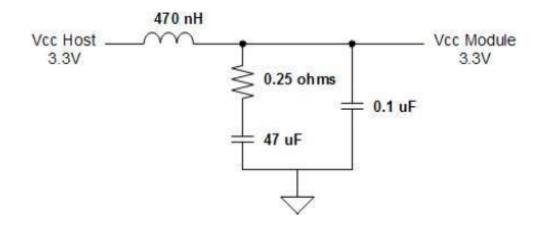

OSFP modules are categorized into several power classes as listed in Table 6. The power class of 400G OSFP SR4 is class 4.

Table 6 Maximum Power Classes

Power Class	Max Power (W)	CMIS Register
1	1.5	Direct readout of Page 00h Byte 200[000xxxxx]
2	3.5	Direct readout of Page 00h Byte 200[001xxxxx]
3	7.0	Direct readout of Page 00h Byte 200[010xxxxx]
4	8.0	Direct readout of Page 00h Byte 200[011xxxxx]
5	10	Direct readout of Page 00h Byte 200[100xxxxx]
6	12	Direct readout of Page 00h Byte 200[101xxxxx]
7	14	Direct readout of Page 00h Byte 200[110xxxxx]
8 ¹	>14	Direct readout of Page 00h Byte 200[111xxxxx]
		wer class 8 the host must read CMIS Page 00h Byte 201 to on. Please see CMIS Byte 201 register definition for more

Host Board Power Supply Filtering

The host board should use the power supply filtering equivalent to that shown in Figure 5

Figure 5 Recommended Host Board Power Supply Filtering

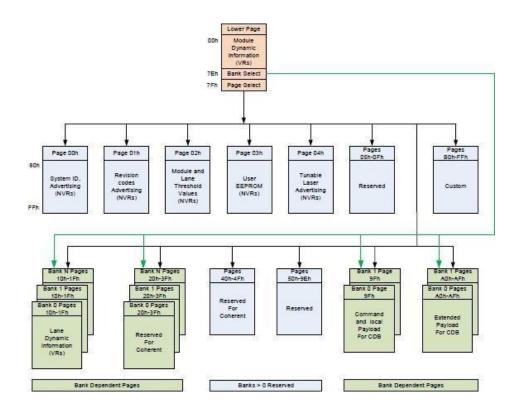
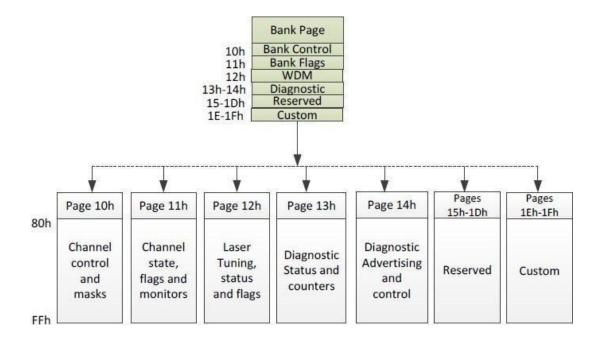

Module Power Supply Specification

Table 7 OSFP Power Specification


Parameter	Symbol	Minimum	Nominal	Maximum	Units
Module power supply voltage including ripple, droop and noise below 100 kHz	Vcc_Module	3.135	3.300	3.465	V
Host power supply voltage including ripple, droop and noise below 100 kHz	Vcc_Host	3.201	3.300	3.465	V
Voltage drop across mated connector (Vcc Host minus Vcc Module)	Vcc_drop			66	mV
Total current for Vcc pins (1)	Icc module			10.0	A
Host RMS noise output 10 Hz-10 MHz	e N_Host			25	mV
Module RMS noise output 10 Hz - 10 MHz	e N Mod	8		15	mV
Module inrush - instantaneous peak duration	Tip			50	μs
Module inrush - initialization time	T init			500	ms
Inrush and Discharge Current (2)	I didt			100	mA/µs
High power mode to Low power mode transition time from assertion of M_LPWn or M_RSTn or ForceLowPwr	T_hplp	8 - C		200	μs

- (1) Utilization of the maximum OSFP power rating requires thermal design and validation at the system level to ensure the maximum connector temperature is not exceeded. A recommended design practice is to heatsink the host board power pin pads with multiple vias to a thick copper power plane for conductive cooling.
- (2) The specified Inrush and Discharge Current (I_didt) limit shall not be exceeded for all power transient events. This includes hot-plug, hot-unplug, power-up, power-down, initialization, low-power to highpower and high-power to low-power.

Management Diagnostic Memory Map

Multiple Applications Supported

The 400G OSFP SR4 supports 6 applications: 400GBASE-SR4, 200GBASE-SR4, 100GBASE-SR4, 200GBASE-SR2, 4x 100GBASE-SR1.

The host can select Applications by programming the AppSel value in Staged Set 0. AppSel=1 is the default Application populated in the Active Control Set at power-on or reset.

Note: that the channels of the module are independent and can be configured separately.(ie. up to eight 100GBASE- SR instances can be configured), however, it does not support different applications with different channels at the same time

The 400G OSFP SR4 supports two methods of application selection and instantiation. The first method is implemented according to CMIS, and the second method is customized, which is simpler.

First method:

The applications switching configuration sequence is as follows: read Application Descriptor Registers and select the required Appsel. Write application configuration to DPConfigLane<i> in Stage Control Set 0, then write 1 to ApplyDPInitLane<i> to trigger Application Instantiation. The Active Set can be read from page11h. For example, select AppDescriptor3:

Step 1: Write 0x30 in Page10h Byte145 ~ Byte152(8 bytes)—Set AppselCode3

Step 2: Write 0xFF in Page10h Byte143 — Set trigger register to run Application Instantiation. **Second method:**

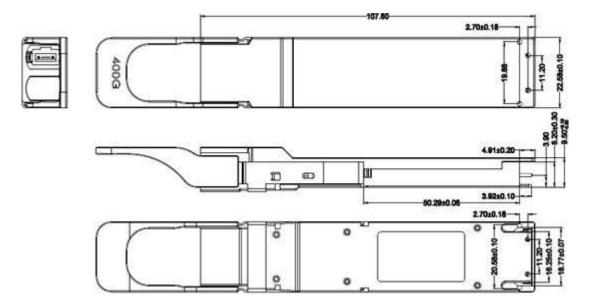

Set the value of Page10h Byte240. This is a private definition.

Table 8 Private Host Electrical Interface Codes

Code Value	Bit Pattern	Host Electrical Interface	Media Interface
0	0000000b	100GAUI-1-S C2M	100GBASE-SR1
1	0000001b	200GAUI-4	200GBASE-SR4
2	00000010b	100GAUI-4	100GBASE-SR4
3	00000011b	400GAUI-4-S C2M	400GBASE-SR4
4	00000100b	200GAUI-2-S C2M	200GBASE-SR2

Mechanical Specifications(Unit:mm)

Pull tab color: Beige

Mechanical Dimensions and Case temperature measurement point

MPO-12 APC connector Optical Interface

Appendix A. Document Revision

Version	Initiated	Reviewed	Revision	Release Date
A0	Tomas	Luke	New Release	2019-7-31

Contact Information

WUHAN ESION OPTIC INC. LTD

ADD: 2/F, Electronic Factory Building 3, No. 777, Guanggu 3rd Road, East Lake New Technology Development Zone, 430223, Wuhan, Hubei, China

TEL:+86-27-87001682 web: http://en.esiontech.com

